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N210808 is an “existence proof” that ignition in the laboratory is 
possible, but getting ignition has been extremely difficult
§ N210808 is the first NIF shot to achieve 𝐺!"#$%&' > 5, (Fusion energy/capsule absorbed energy)

§ N210808 appears to meet several scientific definitions of ‘ignition’, defined as the tipping-point of 
thermodynamic instability, and obtained some burn propagation

§ The shot achieved 𝐺(")*'( ≈ 0.7 (Fusion Energy/Laser Energy)

— “Scientific Breakeven” when Gtarget = 1

— Real Breakeven (more energy from fusion than what is consumed by facility) on NIF not possible, but 
NIF was not designed for energy production

§ Lessons learned:

— Symmetry control, stability control, and high compression all more difficult than originally envisioned

— More sensitivity to target quality and laser delivery than originally envisioned

— Higher energy has been more useful than high peak power

— Optimism is not a strategy 



3
LLNL-PRES-829367

Indirect drive is energy inefficient, but we are trading energy for 
energy density since implosions act like “pressure amplifiers”

~200 Mbars

~200 GbarsBetti & Hurricane, Nature Phys. (2016)

Energy/Pressure Budget for NIF Energy Pressure

Energy in NIF capacitor banks 300-400 MJ

Laser (3⍵ 351 nm) into target 1-1.9 MJ

X-rays into capsule surface 150-250 kJ 100-200 Mbar

Energy into DT 10-20 kJ 100-550 Gbar

The dramatic loss in energy at different stages of 
ICF operation leads to several different definitions 
of Gain:

- Gengineering = fusion yield / facility energy
- Gtarget = fusion yield / laser energy
- Gcapsule = fusion yield / capsule absorbed energy
- Gfuel = fusion yield / energy delivered to DT
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For the first time in the laboratory 𝑮𝒄𝒂𝒑𝒔𝒖𝒍𝒆 ≫ 𝟏 and 𝑮𝒕𝒂𝒓𝒈𝒆𝒕~𝟏

Gain N210207 N210307 N210808
𝐺!"#$ 7.8 ± 1.0 6.2 ± 0.9 70 ± 7

𝐺%&'("$# 0.75 ± 0.05 0.57 ± 0.04 6.0 ± 0.2

𝐺)&*+#) 0.09 0.07 0.7
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Lessons learned

§ Low adiabat designs have yet to work as desired
— Leading hypothesis is instability control at the fuel-ablator interface
— Forces us to work at high adiabat which implies lower potential gain

§ High implosion velocity and low coast (extended duration of late-time x-ray drive) are very effective, if the 
implosion is not compromised by other degradations
— More laser energy than NIF can presently deliver is highly desirable
— “Advanced” hohlraum that can couple more energy to capsule, but also maintain low coast and symmetry control, also 

desirable

§ Symmetry control has been very hard to manage
— Symmetry of the shell (fuel + remaining ablator) areal density is the driving physical factor
— Favors shorter laser pulses, low hohlraum gas fill (for LPI), and larger case-to-capsule ratio hohlraums

§ Hydro instability and mix are manageable to a degree, but are still a limiting factor

§ Despite titanic efforts by the target and laser teams, target quality and laser delivery quality have ongoing 
issues
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Targets are costly, complicated, fragile, and presently have many 
ICF performance limiting defects 
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Much bigger capsule in to slightly larger hohlraum

𝑌 ~ 𝑝345.67
𝑣3897.:

𝛼34;.7
𝑆7.6 1 − 𝜂 * 𝑚𝑓 5.<=(1 − 𝑛𝑅𝐾𝐸)=.>

Yield
Symmetry

Implosion 
velocity

Adiabat Stability

Scale

HYBRID challenge: increase capsule scale, but keep similar adiabat, 
stability, velocity, “coast time”, and symmetry with fixed laser energy

High Yield Big Radius Implosion Design (HYBRID) strategy1

§ With fixed laser energy higher efficiency 
hohlraums to maintain velocity  
— Much more difficult for symmetry (long pulse, 

smaller case to capsule ratio (CCR))

— Use data-driven models5 to guide design 
choices 

— Cross beam energy transfer in low gas fill 
hohlraums to control6

HDC2

910µm

6.4 mm6.2 mm

1: O. Hurricane et al, APS-DPP, PO7.00001 (2017); PPCF 61, 014033 (2019); PoP 26, 052704 (2019)
2: S. Le Pape et al., Phys. Rev. Lett. 120, 245003 (2018)
3: D.T. Casey et al., Phys. Plasmas 25, 056308 (2018)
4: A.B. Zylstra et al., PRL 126, 025001 (2021); A.L. Kritcher et al., PoP 28, 072706 (2021)
5: D.A. Callahan et al., PoP 25, 056305 (2018); J. Ralph, et al., PoP, 25, 082701 (2018)
6: A. L. Kritcher, et al Phys. Rev. E 98, 053206 (2018) , L. Pickworth, et al, PoP (2020)

1050-1100 µm

Lead designer: A. Kritcher
Lead expt: A. Zylstra

Lead designer: L. Berzak Hopkins (C. Thomas)
Lead expt: S.Le Pape (D. Casey)

HYBRID-E4(BigFoot3)

Similar to ITER strategy of increasing heating volume to surface loss ratio

Ablation 
pressure 

“inflight” by 
lower 

“coast”

When brems ~ alpha-heating:



14
LLNL-PRES-829367

Much bigger capsule in to slightly larger hohlraum

HYBRID challenge: increase capsule scale, but keep similar adiabat, 
stability, velocity, “coast time”, and symmetry with fixed laser energy

910µm

6.4 mm6.2 mm

1050-1100 µm

Lead designer: A. Kritcher
Lead expt: A. Zylstra

Lead designer: L. Berzak Hopkins (C. Thomas)
Lead expt: S.Le Pape (D. Casey)

HYBRID-E4

Symmetry control:

Inn
er

sOuter
s

CapsuleMore 
Drive

Δλ

Detuning the outer and inner wavelengths 
(Δλ) transfers power from outers to inners, 
increasing waist drive4

Dl=0

Dl=1A

X-ray 
imaging

HDC2

1: O. Hurricane et al, APS-DPP, PO7.00001 (2017); PPCF 61, 014033 (2019); PoP 26, 052704 (2019)
2: S. Le Pape et al., Phys. Rev. Lett. 120, 245003 (2018)
3: D.T. Casey et al., Phys. Plasmas 25, 056308 (2018)
4: A.B. Zylstra et al., PRL 126, 025001 (2021); A.L. Kritcher et al., PoP 28, 072706 (2021)
5: D.A. Callahan et al., PoP 25, 056305 (2018); J. Ralph, et al., PoP, 25, 082701 (2018)
6: A. L. Kritcher, et al Phys. Rev. E 98, 053206 (2018) , L. Pickworth, et al, PoP (2020)

(BigFoot3)

Au ‘bubble‘ 
blocks inner 
beams5
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Allowed us to reduce coast another 350 ps in 
steep part of the curve1,2

HYBRID-E design modified 
with smaller LEH3

1: O. Hurricane et al., PoP 24, 092706 (2017)
2: O. Hurricane et al., PoP 27, 062704 (2020) and 2nd paper in preparation; 
3: J. Ralph, T Woods, A Kritcher, et al., "Hohlraum Scans Project", (2020)

LEH = Laser Entrance Hole

To push on coast1,2 (more late-time x-ray drive) more we had to 
make the hohlraum even more efficient – smaller LEH, less rad loss
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Allowed us to reduce coast another 350 ps in 
steep part of the curve1,2

HYBRID-E design modified 
with smaller LEH3

1: O. Hurricane et al., PoP 24, 092706 (2017)
2: O. Hurricane et al., PoP 27, 062704 (2020) and 2nd paper in preparation; 
3: J. Ralph, T Woods, A Kritcher, et al., "Hohlraum Scans Project", (2020)
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N210808 ignited (i.e. passed the tipping-point of thermodynamic instability) by 
many published metrics as the hot spot pressure and temperature increased

Metric: J.D. Lindl et al., Phys. 
Plasmas 25, 122704 (2018)

Metric: O.A. Hurricane et al., 
Phys. Plasmas 28, 022704 (2021)
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Relative to earlier companion shots in the burning plasma regime, N210808 
has better symmetry with a larger emission region

All images are 
100 µm square
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N210808 is an “existence proof” that ignition in the laboratory is 
possible, but getting ignition has been extremely difficult
§ N210808 is the first NIF shot to achieve 𝐺!"#$%&' > 5, (Fusion energy/capsule absorbed energy)

§ N210808 appears to meet several scientific definitions of ‘ignition’, defined as the tipping-point of 
thermodynamic instability, and obtained some burn propagation

§ The shot achieved 𝐺(")*'( ≈ 0.7 (Fusion Energy/Laser Energy)

— “Scientific Breakeven” when Gtarget = 1

— Real Breakeven (more energy from fusion than what is consumed by facility) on NIF not possible, but 
NIF was not designed for energy production

§ Lessons learned:

— Symmetry control, stability control, and high compression all more difficult than originally envisioned

— More sensitivity to target quality and laser delivery than originally envisioned

— Higher energy has been more useful than high peak power

— Optimism is not a strategy 
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Data for N210808 as of Oct. 28, 2021

Shot Data
Y(13-15 MeV) neuts. 4.34𝑒17 ± 1.17𝑒16

DT Tion 10.86 ± 0.37 keV

DD Tion 8.94 ± 0.4 keV

Te (range from channels) 8.13 − 9.46 keV

average DSR 3.01 ± 0.31 %

4 Pi DSR 3.3 ± 0.3 %

Burn width 89 ± 15 ns

Ave neutron P0 (radius) 55 ± 5 microns

Ave X-ray P0 (radius) 77±? microns

Some initial Data
Capsule inner radius 1048.8 microns

HDC capsule mass 3927 ng

DT layer thickness 65.9 microns
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N210808 ignited (i.e. passed the tipping-point of thermodynamic instability) by 
many published metrics as the hot spot pressure and temperature increased

Metric: J.D. Lindl et al., Phys. 
Plasmas 25, 122704 (2018)

Metric: O.A. Hurricane et al., 
Phys. Plasmas 28, 022704 (2021) Metric: A.R. Christopherson et al., 

Phys. Plasmas 27, 052708 (2020)
Metric: Patel et al., PoP (2020)
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In order to get thermal instability (ignition), the plasma must 
have 𝜶-heating > all energy losses for a duration of time

𝑐#$
𝑑𝑇
𝑑𝑡 = 𝑓%𝑃% − 𝑓&𝑃& − 𝑃' −

1
𝑚𝑝

𝑑𝑉
𝑑𝑡

Time dependent heat balance (power/mass):

Thermonuclear instability

T(
t)/

T(
0)

t/𝝉

Ignition when these terms dominate

𝒅𝑻
𝒅𝒕

~𝑻𝟑.𝟔

We are trying to engineer a situation where heating dominates over losses

𝝉~𝟏𝟎%𝒔 𝒐𝒇 𝒑𝒊𝒄𝒐𝒔𝒆𝒄𝒐𝒏𝒅𝒔

e-

𝑷𝒆~𝑻𝟕/𝟐/ 𝝆𝑹𝟐

Compressed
DT fuel with hot 
central core
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Spitzer thermal 
conduction

Brems x-ray loss

Alpha-heating

Density Temperature

DT mass 
ablation
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Implosions resist compression in three ways: (1/3) asymmetry 
caused by non-uniformity of the shell and/or hohlraum x-ray drive
Asymmetric implosion abstracted to pistons: [Hurricane, et al., PoP, 2020; Casey, et al., PRL, 2021]

Center-of-mass motion

𝒗𝑪𝑶𝑴

𝒗𝒊𝒎𝒑 𝒗𝒊𝒎𝒑

𝒑

hot
plasma

From conservation of energy:

𝒑 =
𝟏
𝟑
𝒎𝒑𝒊𝒔𝒕𝒐𝒏𝒔𝒗𝒊𝒎𝒑𝟐

𝑽
𝟏 −

𝒗𝒄𝒐𝒎𝟐

𝒗𝒊𝒎𝒑𝟐

minimum hot volume “wasted” KE

Mode-1:

Wasted KE = residual kinetic energy (RKE) [Kritcher, et al, PoP, 2014] 

Experience: 
23% probability shots in 8% spec
50% probability shots in 20% spec
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Implosions resist compression in three ways: (1/3) asymmetry 
caused by non-uniformity of the shell and/or hohlraum x-ray drive
Asymmetric implosion abstracted to pistons:

Center-of-mass motion

𝒗𝑪𝑶𝑴

𝒗𝒊𝒎𝒑 𝒗𝒊𝒎𝒑

𝒑

hot
plasma

From conservation of energy:

𝒑 =
𝟏
𝟑
𝒎𝒑𝒊𝒔𝒕𝒐𝒏𝒔𝒗𝒊𝒎𝒑𝟐

𝑽
𝟏 −

𝒗𝒄𝒐𝒎𝟐

𝒗𝒊𝒎𝒑𝟐

minimum hot volume “wasted” KE

Mode-1: Mode-2:

Key parameter:

𝝆𝜹𝑹𝑾𝑯𝑴 =
∑𝑨𝒋

∑
𝑨𝒋

(𝝆𝜹𝑹)𝒋

weighted harmonic mean of shell areal density
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Implosions resist compression in three ways: (2/3) hydro-dynamic 
instability which defeats density and temperature gradients

D. Clark et al., Phys. 
Plasmas 23, 056302 (2016) 

Tion ⍴

“Takabe” formula for 
linear growth rate:

𝜸𝑨A𝑹𝑻~
𝒌𝒈

𝟏 + 𝒌𝑳𝝆
− 𝒌𝒗𝒂𝒃𝒍

Numerous forms: e.g. 
Bodner, Betti, Kilkenny, 
Takabe, etc.

acceleration (g) is destabilizing
(but how else to get high vimp?)

long density gradients help
high ablation velocity (𝒗𝒂𝒃𝒍) helps
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Implosions resist compression in three ways: (3/3) the materials 
involved appear stiffer than models expected

theory

Why?

Hypothesis:

-Ultra small-scale hydro-instability 
in crystalline ablators?

-Statistical mechanics derived 
equations of state (EOS) getting 
shock compression/rarefaction 
wrong?

-X-ray preheat?

Figure from: Landen, et al., PoP, 28, 042705 (2021)


